Molecular simplification of 1,4-diazabicyclo[4.3.0]nonan-9-ones gives piperazine derivatives that maintain high nootropic activity.
نویسندگان
چکیده
Several 4-substituted 1-acylpiperazines, obtained by molecular simplification of 4-substituted 1,4-diazabicyclo[4.3.0]nonan-9-ones, have been synthesized and tested in vivo on the mouse passive avoidance test, to evaluate their nootropic activity. The results show that, apparently, an N-acylpiperazine group can mimic the 2-pyrrolidinone ring of 1,4-diazabicyclo[4.3.0]nonan-9-one, as the compounds of the new series maintain high nootropic activity. Moreover molecular simplification produces more clear-cut structure-activity relationships with respect to the parent series. The mechanism of action also appears to be similar in the two series. In fact, although the molecular mechanism remains to be elucidated, the most potent compound of each class (DM232 and 13, DM235) is able to increase acetylcholine release in rat brain. Piperazine derivatives represent a new class of nootropic drugs with an in vivo pharmacological profile very similar to that of piracetam, showing much higher potency with respect to the reference compound. Among the compounds studied, 13 (DM235) shows outstanding potency, being active at a dose of 0.001 mg kg(-1) sc.
منابع مشابه
2-pyrrolidinone moiety is not critical for the cognition-enhancing activity of piracetam-like drugs.
Following the indications of previous work, 2-pyrrolidinone moiety of piracetam and piracetam-like compounds has been opened to the corresponding amide derivatives. As found previously in the case of 1,4-diazabicyclo[4.3.0]nonan-9-one compounds, the cognition-enhancing activity of 2-pyrrolidinone compounds is maintained in most cases, suggesting that this moiety is not crucial for activity.
متن کاملComparative Computational Studies of 1,4-Diformyl-piperazine and 1,4-Dithionyl-Piperazine
The molecular properties known to play an essential role in drug-receptor interaction of substructures models of bioactive molecules have been studied using chemical quantum calculations. 1,4-diformyl-piperazine and 1,4-dithionyl-piperazine have been used as models to probe conformational behaviors and some electronic properties of substructure of some tri-substituted piperazine showing dual an...
متن کاملRing-opening reactions of 1,4-diazabicyclo[2.2.2]octane (DABCO) derived quaternary ammonium salts with phenols and related nucleophiles.
1,4-Diazabicyclo[2.2.2]octane (DABCO) has been evaluated as a starting material for the synthesis of 1-alkyl-4-(2-phenoxyethyl)piperazines and related derivatives. We found that 1-alkyl-1,4-diazabicyclo[2.2.2]octan-1-ium salts, resulting from the alkylation of DABCO, efficiently react with a variety of nucleophiles in polyethyleneglycol (PEG) or diglyme at high temperatures to give piperazine p...
متن کاملStereoselective synthesis of oxazolidinonyl-fused piperidines of interest as selective muscarinic (M1) receptor agonists: a novel M1 allosteric modulator.
Syntheses of (1RS,2SR,6SR)-2-alkoxymethyl-, 2-hetaryl-, and 2-(hetarylmethyl)-7-arylmethyl-4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-ones, of interest as potential muscarinic M1 receptor agonists, are described. A key step in the synthesis of (1RS,2SR,6SR)-7-benzyl-6-cyclobutyl-2-methoxymethyl-4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-one, was the addition of isopropenylmagnesium bromide to 2-benzyloxyca...
متن کاملVirtual Screening and Biological Evaluation of Piperazine Derivatives as Human Acetylcholinesterase Inhibitors
The piperazine derivatives have been shown to inhibit human acetylcholinesterase. Virtual screening by molecular docking of piperazine derivatives 1-(1,4-benzodioxane-2-carbonyl) piperazine (K), 4-(4-methyl)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S1), and 4-(4-chloro)-benzenesulfonyl-1-(1,4-benzodioxane-2-carbonyl) piperazine (S3) has been shown to bind at peripheral anioni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 43 23 شماره
صفحات -
تاریخ انتشار 2000